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A B S T R A C T

Essential oils and plant extracts contain a multitude of bioactive substances against fungi, bacteria and nema-
todes. In plant pathology research, botanicals are commonly used in their raw state. Without any type of for-
mulation, bioactive compounds of plants can be degraded and volatilized rapidly under field conditions.
Controlled-release liquid and solid formulations with plant compounds as active ingredients are common in
some fields, such as medicine, pharmaceuticals, food technology and cosmetology. However, the use of con-
trolled-release formulations is an under explored approach in plant pathology, although these technologies are
interesting options for managing seed, soil-borne and post-harvest pathogens. In this review, we discuss the
potential and options of formulations of botanicals against plant pathogens.

1. Introduction

Secondary metabolism of plants is responsible for the synthesis of
numerous bioactive substances, which provide protection against in-
sects, pathogens and limit the growth of other plants species. Essential
oils and plant extracts contain a multitude of bioactive substances, in-
cluding alkaloids, cyanogenic glycosides, glucosinolates, lipids, phe-
nolics, terpenes, polyacetylenes and polythienyls. Scientists have been
explored the diversity of these molecules and their use in integrated
management of pests and pathogens (Isman, 2000; Zaker, 2016). Pro-
ducts based on plant extracts and essential oils are available for use in
managing plant diseases in various countries. However, the number of
botanical-based products remains restricted, despite the enormous po-
tential for botanicals in the pesticide market, especially if we consider
the increasing demand for ecofriendly options to manage agricultural
pests.

The most common scenario in plant pathology research is to use
extracts and oils in their raw state for managing fungi, bacteria and
nematodes. In controlled conditions, extracts and essential oils from
diverse plant species have shown efficiency in inhibiting plant patho-
gens (Isman, 2000; Zaker, 2016). However, the promising results ob-
tained in laboratory or greenhouse are usually not observed in the field,
with few exceptions (Jing et al., 2018). Degradation and volatilization
of bioactive compounds are the major factors that reduce the efficiency
of plant-based products under field conditions. Consequently, the po-
tential suitability of certain plant material for use in agriculture ends up

being underestimated due to losses of bioactive substances. One option
to avoid these drawbacks is to formulate bioactive plant products using
polymers, plasticizers, stabilizers and biodegradable antioxidants.

Polymers, emulsifying agents, surfactants, solvents, stabilizers, de-
foamers and other components are used to ensure the stability, ad-
herence and controlled release of the bioactive compounds, depending
on the type of formulation (Knowles, 2008; Gasic and Tanovic, 2013).
Examples of slow release liquid and solid formulations with plant
compounds as active ingredients are common in some fields, such as
medicine, pharmaceuticals, food technology and cosmetology (Arriola
et al., 2016; Mikulcová et al., 2016). In the agricultural sector, the use
of controlled release formulations is still in the initial stage, although
these technologies are interesting options for managing seed, soil-borne
and post-harvest pathogens (Knowles, 2008). In this type of formula-
tion, active ingredients are released into the environment over time and
this feature brings benefits such as reducing losses of the active in-
gredient, a longer period of activity and reduced toxicity to animals and
plants (Knowles, 2008).

The formulation process may vary greatly according to the methods
and materials used for encapsulation, but it is important that botanicals
be formulated for use in experiments, rather than their use in raw state.
In this review, we discuss the potential use of formulations of plant-
based extracts, essential oils and isolated active compounds against
plant pathogens. We present options for preparing formulations that
may be used in plant pathology research and related fields.
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2. Principal methods of encapsulation

2.1. Atomization (spray drying)

This process consists of three steps: first, the product (e.g., extract
and essential oil) is dispersed as droplets, which increases its surface
area. Second, dispersed droplets came into contact with a heated air
stream and in the third, the solvent is evaporated, resulting in the
formation of the solid particle (Fig. 1) (Oliveira and Petrovick, 2010).
This a low-cost process at industrial scale, especially for the micro-
encapsulation of essential oils (Fernandes et al., 2014; Bakry et al.,
2016).

Spray-drying formulations have not been extensively explored for
the control of plant pathogens (Corrêa et al., 2016; Cortesi et al., 2017).
In a few examples, formulations of coffee leaf extracts or gallic acid
were used as plant resistance inducers (Corrêa et al., 2016) or in the
management of Pseudomonas syringae pv. tomato (Cortesi et al., 2017).

2.2. Lyophilization (freeze-drying)

In the freeze-drying process, the product (extract or oil) is rapidly
frozen, thus preserving its chemical characteristics. In the following
step, the frozen material is subjected to a partial vacuum. Then, the ice
or other frozen solvents are removed from the material through sub-
limation and the product is dried to approximately 2% wet basis. The
dehydrated solid material is milled until reaching the desired particle
size.

Freeze-dried extracts of some plants have fungicidal activity.
Freeze-dried extracts of Ruta graveolens reduces the mycelial growth of
the phytopathogenic fungi Fusarium solani, Pyrenochaeta lycopersici,
Thielaviopsis basicola, Verticillium dahliae and Penicilum sp. (Oliva et al.,
1999), while those from Pelargonium sp., Salvia officinalis, Lavandula
officinalis, Mentha pulegium and Mentha arvensis reduces up to 85% the
germination of Phakopsora pachyrhizi spores (Borges et al., 2013).

2.3. Liposome inclusion (emulsions)

2.3.1. Emulsions
An emulsion is defined as a thermodynamically unstable system

containing at least two non-miscible liquid phases, where one phase
contains colloidal particles dispersed in the other phase. Nanoemulsions
are the most studied form of emulsions. They are colorless emulsions
with droplet sizes ranging from 50 to 200 nm, while conventional

emulsions appear as blue droplets with size between 1 and 100 μm. In
comparison to conventional emulsions, nanoemulsions have higher ki-
netic and thermodynamic stability, greater ease of diffusion and na-
noparticle transport, enhanced incorporation and protection of both
hydrophilic or lipophilic molecules in their dispersed phases. The
transport of phytochemicals across cellular membranes, for example, is
facilitated when the products are encapsulated in nanoemulsions
(Huang et al., 2010).

Emulsions of essential oils and plant extracts are valuable options
for controlling plant diseases (Lu et al., 2013; Elshafie et al., 2015; El
Ouadi et al., 2017; Jing et al., 2018). For example, nanoencapsulated
essential oils of cinnamon, lemon and bergamot have antifungal activity
toward Aspergillus niger (Ribes et al., 2016). Other notable examples are
the suppression of Xanthomonas fragariae by palmarosa oil nanoemul-
sion (Luiz et al., 2017) and the inhibition of Rhizoctonia solani and
Sclerotium rolfsii by nanoemulsions of oils of Azadirachta indica A. Juss
and Cymbopogon nardus (L) Rendle (Ali et al., 2017).

2.4. Extrusion – casting

In this method, an emulsion/extract core and coating material (al-
ginate, acetate, starch, etc.) is applied through pipette or nozzle at high
pressure into an ionic solution under agitation, such as calcium
chloride. Gel beads are collected after 20min and dried. The resistance
of the bead wall depends on the components of the formulation and the
contact time between particles and the ionic solution. Care must be
taken to minimize or avoid losing active compounds during the en-
capsulation processes and storage (Arriola et al., 2016; Pasukamonset
et al., 2016).

Plant extracts and essential oils are encapsulated by extrusion and
used in food preservation (Arriola et al., 2016; Pasukamonset et al.,
2016), e.g. minimally processed apples and mushrooms (Raybaudi-
Massilia et al., 2008). However, this technique still has not been ex-
plored in the formulation of botanicals for plant disease management.

2.5. Fluidized bed

The fluidized bed coating consists of spraying an encapsulated agent
on a fluidized powder bed (Hemati et al., 2003). The material to be
encapsulated is suspended in solid state by a current of gas at a given
temperature and sprayed with fine droplets of the encapsulating ma-
terial liquid, forming a fine liquid film on the particle. Finally, the
materials undergo wetting and drying, thus forming a solid homo-
genous layer (Benelli et al., 2015). The rate of solid circulation, nozzle
atomization pressure, humidity and coating temperature may interfere
in the efficiency of the coating (Guignon et al., 2002). Fluidized beds
are widely used in the pharmaceutical and food industries, as well for
synthesizing agrochemicals, dyes and other industrial chemicals.

Granules obtained through this technique have higher bioactive
compound retention, better flow properties and higher coating effi-
ciency compared to those obtained by spray drying (Benelli et al.,
2015). It is possible to prepare controlled-release formulations using
this process (Hemati et al., 2003), which could be used in products for
managing soil-borne pathogens. Another advantage of this method is
the possibility of large scale applications, by presenting a short circu-
lation time of particles and high heat transport, in addition to being
highly controllable and automated (Capece and Dave, 2011). Śmigielski
et al. (2011) observed that more than 40% of the essential oils of la-
vander (L. angustifolia) are lost during the drying process. However, if
the fresh biomass of a plant is dried by fluidized bed in a system of
closed circuit containing a drying agent and a heat exchanger, the
generated product will contain more volatile and biologically active
substances than other processing methods (Śmigielski et al., 2011).

Fig. 1. Formation of particle by spray drying (adapted from Oliveira and
Petrovick, 2010).
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2.6. Coacervation

Coacervation is a method of encapsulation done in three steps:
preparation of the emulsion, encapsulation and stabilization of the
microcapsule (Xiao et al., 2014). Surfactant agents, such as Tween 80,
are used during emulsion preparation (Zhang et al., 2011). Tannic acid,
glycerol or glutaraldehyde may be used in the hardening process (Xing
et al., 2004; Huang et al., 2007; Zhang et al., 2011). Some biopolymers
are used as options for encapsulation, protection and release of the li-
pophilic compounds (García-Saldaña et al., 2016), principally protein
of soy/Arabic gum, gelatin/Arabic gum and gelatin/pectin (Jun-Xia
et al., 2011; Zhang et al., 2011). Coacervation is a low-cost technique
and is the most recommended for microencapsulating oily compounds
and essential oils (García-Saldaña et al., 2016).

The treatment of peanut seeds with microcapsules containing es-
sential oil of Peumus boldus Mol., produced by complex coacervation,
ensured the best protection against Penicillium sp. and Aspergillus sp.
during 114 days of storage (Girardi et al., 2016). Peng et al. (2014) also
encapsulated essential oils of mustard using coacervation and reported
high physical-chemical stability of the oils and antimicrobial action.

2.7. Molecular inclusion

Molecular inclusion complexes are generally special compounds,
where the molecules of a component, called guest molecules, are totally
or partially within the cavity of the other component, the host mole-
cule. Cyclodextrin is the most used host molecule and the formation of
these complexes depends on the nature of its cavity (Tan et al., 2012).

Cyclodextrins are cyclic oligosaccharides obtained from the action
of the cyclodextrin enzyme glycosyltransferase in starch. External sur-
face of cyclodextrin is hydrophilic, while internal surface is hydro-
phobic. Therefore, if a molecule guest molecule fits in this cavity, an
inclusion complex is formed (Valentini et al., 2015). As a result, organic
and inorganic molecules may be encapsulated, and the solubility and
stability of the guest molecule are changed (Mura, 2014; Sherje et al.,
2017). The main advantage of molecular inclusion with cyclodextrin is
to increase the solubility of the compounds in water (Sherje et al.,
2017), a desirable characteristic in encapsulating essential oils.

In the last few years, molecular inclusion with cyclodextrin has been
used for encapsulating active compounds against plant pathogens,
particularly fungi. Eugenol microencapsulated by inclusion within β-
cyclodextrin was shown to be effective against Peronophythora litchi
(Gong et al., 2016). Essential oil of clove and oregano

microencapsulated with β-cyclodextrin also inhibited the mycelial
growth of Fusarium oxysporum (Estrada-Cano et al., 2017). On the other
hand, free phenylpropanoids were more efficient in inhibiting the
growth of F. oxysporum and Botrytis cinerea when encapsulated with
cyclodextrin (Kfoury et al., 2016). Some hypotheses may explain this
result, such as the use of the inclusion complex by the fungus as a
carbohydrate source or the encapsulation of substances synthesized by
fungi themselves that auto-inhibit mycelial growth (Kfoury et al.,
2016).

3. Principal materials used for encapsulation

3.1. Alginate

Alginate is a linear copolymer of mannuronic acid and its C-5
epimer guluronic acid and molecular formula (C6H8O6)n. It is found in
marine algae and some bacteria. The material varies widely in terms of
its proportion between mannuronic waste (M) and guluronic (G), as
well as in its sequential structure and degree of polymerization. In this
way, the material may present alternate sequences of M-G residues and
blocks composed of two or more M-G residues (Skjk-Bræk et al., 1986).

Alginate is a biodegradable polymer that forms a tridimensional gel
in the presence of bivalent cations, e.g. Ca2+ and Mg2+. Calcium ions
bind to guluronic acid blocks of the alginate chains, forming a tridi-
mensional network (Fig. 2) (Corona-Hernandez et al., 2013). This
property makes alginate an attractive material for encapsulating
bioactive compounds (Corona-Hernandez et al., 2013), including
compounds of phytopathological interest.

Sodium alginate may be used, for example, in the formulation of
phenolic compounds extracted from plants, ensuring more than 80%
efficiency in retaining these substances (Belscak-Cvitanovic et al., 2011;
Stojanovic et al., 2012; Deladino et al., 2013). The encapsulation of
plant extracts, essential oils and biocontrol agents in Ca-alginate mi-
crospheres prolong the viability of active compounds or antagonistic
microorganisms (Li et al., 2017; Locatelli et al., 2017).

3.2. Chitosan

Chitosan is a cationic amino polysaccharide, derived from the
deacetylation process of chitin, which constitutes the highest fraction of
insect and crustacean exoskeletons (Dias et al., 2008). Its structure is
formed by repeating units of β (1–4) 2-amino-2-deoxy-D-glucose (or D-
glucosamine) and its molecular formula is (C6H11O4N)n. Chitosan may

Fig. 2. Tridimensional network of alginate and calcium (“egg-box model”). Adapted from Corona-Hernandez et al. (2013).
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be used as component in various methods of encapsulation, such as
coacervation, emulsions and extrusion (Kashyap et al., 2015). Chitosan
nanogels are biocompatible and stable when dispersed in water, which
facilitates the handling of the nanocapsules (Brunel et al., 2009).

The mixture of powder and cinnamon extract with chitosan showed
potential for controlling Rhizoctonia solani and Meloidogyne incognita in
vitro, although studies have not been done in the field (Seo et al.,
2014). In the laboratory, chitosan capsules containing essential oils of
Citrus bergamia and Citrus aurantium inhibited the growth of Aspergillus
flavus (Aloui et al., 2014).

3.3. Cellulose acetate

Cellulose is the most abundant natural polymer on Earth (Huber
et al., 2012). Due to its low melting point, cellulose is normally con-
verted into its derivatives to make it more processable. This is the case
for some cellulose-derived thermoplastic esters, such as cellulose
acetate (CA), cellulose propionate and cellulose butyrate (Huber et al.,
2012).

CA is produced by the reaction of wood fiber with acetic anhydride
and acetic acid, forming an ester. This reaction occurs in the presence of
sulfuric acid. The product is subsequently hydrolyzed to remove the
acid, the sulfate groups and the acetate until obtaining the desired
properties. CA crude fiber is derived from the physical transformation
of CA flakes, where the CA is dissolved in acetone and then dilated in
crude fiber (Fischer et al., 2008). CA may be produced with wide range
of degrees of substitution (DS). However, the most common is the
production of acetates with DS of 2.5, due to the necessity of achieving
products with adequate molar mass, melting temperature and adequate
solubility. For DS > 2.5, dichloromethane is used as solvent (Fischer
et al., 2008).

Cellulose acetate films can contain plant extracts and oils.
Depending on the required properties of the film, plasticizers may be
added to the CA, such as dioctyl phthalate (DOP), triethyl citrate (TEC)
and glycerol (Fridman and Sorokina, 2006). Pola et al. (2016) devel-
oped CA films containing essential oil of oregano and montmorillonite
clay for the control of the post-harvest pathogens Alternaria alternata
and Rhizopus stolonifer. The films had antifungal effect by direct contact
and by the release of active volatile compounds (Pola et al., 2016).

3.4. Starch

Starch is a reserve polysaccharide of plants stored in the form of
granules (Mali et al., 2010). It is a low-cost polymer, easily available
from diverse sources, such as corn, rice, cassava, wheat, etc. The starch
structure consists of anhydroglucose units linked by α-D-(1, 4) gluco-
sidic bonds. It is composed of two fractions of homopolymers: amylose
(15–30%) and amylopectin (85-70%) (Mali et al., 2010). In plant pa-
thology research, starch-based films may be used in post-harvest pre-
servation of fruits preservation and may contain extracts of plants,
salicylic acid and essential oils (Ghasemlou et al., 2013; Santacruz
et al., 2017).

The application of starch in film production is based on chemical,
physical and functional properties of the amylose to form gels and on
their abilities to form films. Due to their linearity, the amylose mole-
cules in solution tend to be oriented in parallel, thus forming hydrogen
bonds between the hydroxyls of adjacent polymeric chains. As a result,
the affinity of the polymer to water is reduced, which favors the for-
mation of opaque pastes and resistant films (Mali et al., 2010). The
preponderance of amylose in starches results in stronger and more
flexible films, since the branched structure of the amylopectin generally
takes the form of films with inferior mechanical properties (Huber
et al., 2012).

Traditionally, starch-based films have been produced by the casting
method (Mali et al., 2010), since the starch in its natural form has a
melting temperature higher than its degradation temperature. In this

method, the starch is solubilized in a solvent and the resulting filmo-
genic solution is applied on a clean flat surface. The solution is left at
25–30 °C for the solvent to evaporate. Dias et al. (2010) reported a
technique to prepare rice starch and rice flour films by casting. Briefly,
aqueous solutions with raw starch or flour (5%, m: v) is stirred for
15min at 4000 rpm. Plasticizer (glycerol or sorbitol) is added to the
aqueous solution at concentrations of 0.20 or 0.30 g g−1 dry raw starch
or flour. Then, the mixture is heated to 85 °C under constant stirring for
1 h, and poured homogeneously onto plexiglass plates and dried at
30 °C for 14 h in an oven with circulating air. For preparation of rice
flour films, the pH of the aqueous solution is adjusted to 10.0 to pro-
mote protein solubilization.

Plasticizers are incorporated into films to increase their flexibility,
processability and extensibility (Rabelo and Paoli, 2013). The most
commonly used plasticizers are glycerol and sorbitol. Glycerol is a small
hydrophilic molecule with hydroxyl groups that easily interacts with
the starch chains (Mali et al., 2010). Fatty acids and essential oils also
may be used as plasticizers when it is desirable to reduce the hydro-
philic character of starch films (Mali et al., 2010).

Starch films biodegrades rapidly in environments with available
water (Mali et al., 2010). The incorporation of other more stable
components in the blend slows the degradation of starch films. Starch
blends can be produced with chitosan, polylactic acid (PLA); poly(bu-
tylene adipate-co-terephthalate) (PBAT) and poly butylene succinate
co-adipate (PBSA) (Mali et al., 2010; Elsabee and Abdou, 2013; Shirai
et al., 2013).

3.5. Polycaprolactone and poly (butyl-adipate-co-terephthalate) (PBAT)

Polycaprolactone (PCL) is a biodegradable synthetic polymer with
high permeability to active compounds. PCL is a semi-crystalline
polymer, with glass transition temperature is −60 °C and melting
temperature from 59 to 64 °C (Woodruff and Hutmacher, 2010). PCL
ensures formulation stability, increases stress-crack resistance and en-
hances controlled-release properties. PCL-based nanocapsules con-
taining essential oil of Lippia sidoides, a plant species rich in thymol,
remained stable for 60 days at 5 °C (Pinto et al., 2016). Cellulose pro-
pionate, cellulose acetate butyrate, polylactic acid and polylactic acid-
co-glycolic acid can be mixed with PCL to improve formulation char-
acteristics (Woodruff and Hutmacher, 2010).

Poly (butyl-adipate-co-terephthalate) (PBAT) is a synthetic copo-
lyester produced from the combination of butane-1,4-diol, adipic acid
and terephthalic acid. Although it is derived from petroleum, it may
completely biodegrade in a few weeks (BASF, 2003). PBAT films have
good processability, elevated flexibility, hydrophobic characteristics
and good mechanical and barrier properties. It is more expensive than
the other polymers. However, PBAT's mixture with low cost biopoly-
mers may result in the production of cheaper biodegradable films with
good mechanical and barrier properties (Brandelero et al., 2012; Shirai
et al., 2013; Olivato et al., 2015).

4. Concluding remarks

Plants synthesize a range of compounds that can be used in the
management of plant pathogens. Due to the diversity of plant species in
many countries, especially those located in tropical and subtropical
regions, several substances with inhibitory action against phytopatho-
gens have not been discovered yet. However, the potential of many
promising botanicals has been underestimated because of the in-
efficiency of these materials in experiments under field conditions. We
strongly believe that the formulation of plant extracts and essential oils
reduces losses of bioactive compounds and many plant-based products
can be used as alternatives for controlling plant diseases. In plant pa-
thology research, few studies have focused on the bioactivity of for-
mulated botanicals. As discussed here, some low-cost formulations can
be prepared for experimental purposes and the losses of bioactive
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compounds may be reduced. The development of potential plant-based
materials into commercial products depend on various factors, such as
operational processes and financial viability. However, nanomaterials
and nanotechnologies have led to unprecedented possibilities for the
development of novel plant-based products (Khot et al., 2012). There-
fore, plant pathologists must be encouraged to formulate botanicals
rather than to use them in their raw state, and this approach may in-
crease the number of eco-friendly options for plant disease manage-
ment.
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